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Abstract

The Middle Eastern region encompassing Israel, Jordan, and the Palestinian Territories
(West Bank and Gaza) is an arid region with fast growing populations. Adequate and
equitable access to water for all the people of the region is crucial to the future of Middle East
peace. However, the current water distribution system not only fails to provide an adequate
and equitable allocation of water, but also results adverse impacts on the environment.
This project involves building a mathematical model to aid decision-makers in designing
an optimal water distribution network. A new method for incorporating uncertainty in
optimization that is based on Bayesian simulation of posterior predictive distributions is used
to represent uncertainty in demands and costs. The output of the model is a most-probable
least-cost modication to the existing water distribution infrastructure. Additionally, the
model output includes the probability that a network component (new desalination plant,
new pipe, new canal) is part of a least-cost installation.
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Chapter 1: Introduction

The Problem

Water scarcity is a world-wide problem that has implications for public health, food supply,

ecosystem health, and political stability. The problem of water scarcity, if not addressed, will

get worse in the future. Areas of the world that are currently facing water deficits may be

further stressed as demand for water increases with population growth and a rising standard

of living. Additionally, existing supplies of freshwater could be threatened by shifting weather

patterns as a result of climate change.

The Middle Eastern region encompassing Israel, Jordan, and the Palestinian Territories

(West Bank and Gaza) is especially vulnerable to water stress as it is one of the most arid

regions on earth and it has one of the fastest growing populations. Adequate and equitable

access to water for all the people of the region is crucial to the future of Middle East peace.

However, the current water supply and transmission system is failing to satisfy demand or

provide an equitable allocation of water. Furthermore, the continued overexploitation of

water resources has resulted in a decline in water quality and in adverse impacts on the

environment.

This project involves building an optimization model that allows decision makers to

evaluate various alternatives for a Middle East water supply and transmission network plan

1
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that takes that will satisfy the population’s forecasted demand in 2025 in a cost-effective,

equitable manner.

Background

Israel derives one third of its fresh, natural water from Lake Kinneret (the Sea of Galilee)

basin and the remainder from the streams and groundwater in the Mountain Aquifer and

the Coastal Aquifer. Beginning in 1960s, Israel undertook an ambitions program to build

the National Water Carrier (NWC) to transport water from the sources in the northern

part of the country to the drier southern agricultural region. At its inception, 80% of the

natural fresh water was supplied by the NWC went to agriculture, but the situation now

is completely reversed, with urban areas receiving 80% of the water for drinking water and

for domestic purposes. As the municipal demand for water grows with population growth

and a rising standard of living, the allocations of fresh water to agriculture have decreased

dramatically. Even with the curtailment in agricultural demand (made possible, in part by

the substitution of brackish and treated wastewater), total demand for water remains greater

than the available natural resource. A drought from 1999 - 2003 and again the last two years

has exacerbated the problem. The water level of Lake Kinnerett, the main source of Israel’s

surface water, is monitored daily and compared to three safety lines, an upper and lower

“red” line, and the “black line.” If the water level of the lake falls below the red line, there

may be damage to the water source, and withdrawals must be slowed. If the water level falls

below the black line, “irreparable damage” is done and it is no longer physically possible to

pump water from the lake into the NWC. Since the fall of 2009, the level of Lake Kinneret

has been below the lower red level, and according to the projections of The Government

Authority for Water and Sewage, “in the next 5 years it will not be possible to reach a level

2
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above the red lines for all of Israel’s water reservoirs”(Fixler, 2010).

Like many of the countries in the region, Jordan suffers from a lack of rainfall — 80% of

the country received less than 100 mm of precipitation per year, and of that, 93.9% evaporates

before it can recharge the groundwater. This is unfortunate, as Jordan must derive most of

its water from groundwater resources since the Jordan River and its tributaries, the Zarqa

and Yarmouk, are undependable due to over-pumping by Israel and Syria, and pollution

from the Amman-Zarqa area (Mohsen, 2007). The water stress has become worse in Jordan

over the last two decades as tens of thousands of Iraqi refugees fled to Jordan during the

first and second Gulf Wars, causing a spike in population and a subsequent increase in water

demand.

The Palestinians rely almost entirely on ground water from wells in the West Bank

(Mountain Aquifer) and in the Gaza strip (Coastal Aquifer). All of the water wells in the

Gaza Strip are under Palestinian control, but that is not the case in the West Bank where

Mekorot, the Israeli national water company, owns a large number of the wells installed for

the settlements and kibbutz. In addition to the water obtained from their own well, the West

Bank Palestinians purchase water from Mekorot, some of which is supplied from outside of

the West Bank.

If the population of the region grows as expected, and if the per capita demand for water

increases as the economic status of the people of the region improves, future water deficits will

only increase. Water deficits in the greater Middle East region are expected to reach 2,250

MCM by 2040 (Qdais, 2008), and the negative impacts of this shortfall will be particularly

strong in Israel, Jordan, and Palestine. Already, the residents of the area are some of the most

water-impoverished people in the world. In many neighborhoods in Amman, for example,

water may only be available once a week, straining the ability of residents to meet their entire

domestic needs (Lipchin, 2007). Additionally, there is a disparity in the amount of water

3
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received on a per capita rate between the nations, with Israelis consuming approximately

3.5 times the amount of domestic (household) water as is available on a per capita basis to

the Palestinians. This situation aggravates the resentment the Palestinians have for Israeli

control and hampers the peace process in the region.

Political conflict is not the only problem that results from the water shortage in the region;

the natural environment also suffers. Over withdrawals from aquifers allow salt water and

other pollutants to intrude, resulting in a decline in water quality, and over withdrawals

from surface waters deprive natural habitats (and the plants and animals they support) of

the water they need. One of the most notable environmental impacts of the current water

management system has been the decline of the Dead Sea. The water projects of Israel and

Jordan divert almost all of the water that would naturally flow from the Jordan River into

the Dead Sea, causing the water levels of the Dead Sea to decline between 0.5 and 0.95

m/year (Asmar, 2003) and the surface area of the lake to shrink by 33% in the last 55 years.

The declining water level has resulted in sinkholes forming along the shoreline, destruction

of roads and bridges, ecological disruption, and the loss of water from the surrounding

freshwater aquifers. This in turns threatens the important tourism business, the local potash

industry, several endangered species, human health, and regional stability (Qdais, 2008).

Potential Solutions

Decision makers in the Middle East are currently studying various alternatives to address

water scarcity and the Dead Sea restoration. Potential projects include a series of desali-

nation plants along the Mediterranean, a water connection between the Mediterranean Sea

and the Dead Sea (here after called the Med-Dead Water Conveyance or M-DWC), a water

connection between the Red Sea and the Dead Sea (Here after called the Red-Dead Water

4
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Conveyance or R-DWC), or a combination of such projects. The World Bank is currently

financing a study of the Red Sea — Dead Sea Water Conveyance Project, at a cost of $15.5

million dollars, indicating the level of importance placed upon reaching a solution that will

meet current and future water demands in a sustainable manner (The World Bank, 2007).

Israel’s Desalination Master Plan

To address both the severe water shortages projected for the future and the continued de-

terioration in groundwater quality, in 1996 the Israeli government initiated studies to form

the basis of a Desalination Master Plan. The plan projected water demands over a 20 year

period, identified potential desalination plan sites along the Mediterranean coast, and exam-

ined the costs of producing desalinated water and delivering it to the national water supply

system (Dreizin et al., 2008). At that time, six locations were identified in the plan as the

most suitable for desalination. However, soon after the Desalination Master Plan was com-

pleted, a prolonged drought led to a national water crisis and a need to build desalination

plants as quickly as possible. As of early 2010, plants have been built at two of the locations

identified in the Master Plan, Ashkelon and Hadera, and a third plant has been built at

Palmachim.

Research Objectives

This project involves building a mathematical model to aid decision-makers in designing an

optimal water distribution network. Chapter 2 discusses modeling and solving the problem

for competing objectives: minimizing cost and maximizing per capita water supply equity.

Chapter 3 discusses a new method to incorporate uncertainty in the model inputs. In

both chapters, the objective is to decide which potential desalination plants to add to the

5
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existing water distribution system, which potential connections between desalination plants

and demand centers to add to the system, and how much water should be produced at each

plant and flow along each connection in order to satisfy the demand at each demand center

at the least total cost (cost of building new infrastructure and operating the new and existing

infrastructure).

6
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Chapter 2: Finding an Equitable

Solution

Math Programming Model of the Middle East Water

Distribution Network

The Middle East water distribution problem can be modeled a network optimization problem

as it naturally lends itself to the definition of a network:

• Network — a set of nodes and a set of arcs

• Nodes — set of points connected by arcs to form a network

• Arc — an ordered pair of nodes that represents a possible direction of motion between
nodes.

• Capacity — the quantity of a product that can pass through a given arc

• Cost — the financial expense for transporting a product through a given arc

• Source (S) — starting point in a network problem

• Sink (T) — terminal point in a network problem

Figure 1 is a graphical representation of a network as described by:

7
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Figure 1: Example of a network

Nodes: {A, B, C, D}
Arcs: {(A,B), (A,C), (B,D), (C,A), (C,B), (D,B), (D,C)}

Capacity: {(A,B)=2, (A,C)=4, (B,D)=5, (C,A)=3, (C,B)=1, (D,B)=2, (D,C)=3}
Sources: A, D
Sinks: B, C

Middle East Water Distribution Network

In the model of the Middle East water distribution system as a network the source nodes rep-

resent the desalination plants, lakes, and groundwater sources; the demand nodes represent

the cities (or population centers); and the arcs represent the canals, pipelines, and tunnels

that connect the sources to the sinks. The existing water distribution system in Israel, the

National Water Carrier (NWC), delivers water from Lake Kinneret (the Sea of Galilee) in

the north to the coastal cities and eventually to the agricultural region in southern Israel

(the Negev). The NWC consists of a system of underground pipes, open canals, interim

reservoirs and tunnels, which is simplified in the network representation as 13 intermediate

nodes (they are neither source nodes nor sink nodes). Included in the network are three

8
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Figure 2: Existing water distribution network. This map background and the background
of all maps in this document are courtesy of UNEP/DEWA/GRID-Europe (United Nations
Environmental Program, 2010)

supply points (source nodes) of fresh, natural water: Lake Kinneret, the Mountain Aquifer,

and the Coastal Aquifer, and five desalination plants that add supply to the NWC: (from

north to south) Hadera, Palmachim, Granot, Gat, and Ashkelon. Additionally, there are

desalination plants that are currently not connected to the NWC but supply water to local

demand such as the three Sabah plants that supply Eilat. The network considers thirteen

demand points (sink nodes) across Israel as well as the demand for fresh water for agricul-

ture as represented by one demand node at the southern end of the NWC. The Palestinian

9
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demand is represented by one demand point for the Gaza Strip and four demand points in

the West Bank. The West Bank does not currently have a comprehensive water distribution

network, but rather regional piping networks connected to Palestinian and Israeli (Merkrot)

wells as all the fresh water available in the West Bank is groundwater (Palestinian National

Authority and Palestinian Water Authority). Additionally, some water is supplied from the

Israeli water system to the West Bank. The existing Jordanian water distribution system

mostly moves water from the Jordan River up to Amman and the other population centers

in the NW part of the country, but is not fully connected as in the system in Israel. In this

model, Jordanian demand is accounted for by three demand points centered in the areas of

high population: Amman, Az Zarqa, and Irbid. Using the locations identified in the Israeli

Desalination Master Plan and recently reported proposals (Global Water Intelligence, 2009)

potential desalination plants along the Mediterranean could be located at Sorek, Palmachim,

Ashdod, Shomrat, Haifa, Rishon Le Zion, Netanya, and Tel Aviv. Finally, the large water

conveyance projects such as the M-DWC (Mediterranean pipe/canal to western Dead Sea

with desalination) or R-DWC (Red Sea pipe/canal to southern Dead Sea with desalination)

could be built to supply water to the region as a whole and restore the Dead Sea. A graph-

ical representation of the network problem with existing supply nodes and arcs is shown in

Figure 2; potential nodes and arcs is show in Figure 3.

A problem modeled as a network can then be solved for different objectives. For example

the shortest path (in cost or distance) between two nodes, the maximum flow of the network,

and the minimum cost network flow (the minimum cost way to satisfy the demand at all the

sinks).

10
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Figure 3: Potential water distribution network. Existing network elements are blue, potential
new network elements are green, and the proposed large water conveyance projects are shown
in red.

Multiple Objectives in the Middle East Water Distribution Net-

work

Finding an “optimal” water distribution network in the Middle East is complicated because

of the presence of multiple objectives. Most obvious is the objective of satisfying current and

future demand for water at the least cost. However, seeing that water is intrinsically linked

to political stability in the region, finding a solution that maximizes cooperation among the

Middle Eastern states can also be considered optimal. The notion of what makes the water

11
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distribution network an “optimal” network may also be different among the Middle Eastern

states. Based on past actions and statements by the governments in the region, maintaining

sovereign control over the source of water is highly important (which may be at odds with the

idea of interstate cooperation and control of water sources). In the case of the Palestinians

and Jordanians, increasing their citizen’s per-capita share of water is seen as critical for the

economic development of their nations, therefore minimizing the per-capita disparities in

water availability between the Israelis and the Palestinians and Jordanians may be another

way to optimize the network. Finally, there are the supporters of the natural environment

in general and the Dead Sea in particular who would like to see a water distribution network

that takes into account “nature’s” needs. In this case an optimal water distribution network

could be one that minimizes negative environmental impacts, or minimizes the further decline

in the Dead Sea water level, or instead maximizes the restoration of the Dead Sea.

This chapter presents a method to solve the Middle East water distribution network

problem for two different objectives: minimum cost and maximum equity. It is assumed

that both these objectives can not be optimized at the same time, so intermediate solutions

are found that strike a balance between cost and equity.

To minimize the cost of the Middle East water distribution network the problem is

modeled as a fixed-charged network flow (FCNF) problem with the following objective:

decide which potential desalination plants to add to the existing water distribution system,

which potential connections between desalination plants and demand centers to add to the

system, and how much water should be produced at each plant and flow along each connection

in order to satisfy the demand at each demand center at the least total cost (cost of building

new infrastructure and operating the new and existing infrastructure). The addition of the

decision variables changes the formulation of this problem from a linear program to a mixed

integer program (MIP).

12
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Fixed Charge Network Flow Model

For the model we specify a network G = (N,A) whose nodes N are comprised of the largest

cities in the region (demand points), and surface water sources and desalination plants

(supply points). The set of arcs A includes the actual and potential connections (pipes,

canals, etc.) from the supply points to demand cities and the actual and potential connec-

tions between pairs of cities. The planning objective is to minimize the total installation

and operational costs of the water distribution network and desalination plants. Capital

costs include purchasing land, building infrastructure, etc. Operating costs include supplies,

chemicals, labor, energy, etc.

The Decision Variables

The decisions involved in installation and operation include:

• whether to install a new desalination plant and/or expand capacity at an existing plant,

• whether to install a new water conduit and/or increase the capacity of an existing
conduit, and

• how much water should flow between locations.

The variables in the problem are listed in Table 1.

Table 1: Variables

Notation Description of Variables

fij Continuous; the flow along arc (i, j)
uij Continuous; the additional capacity needed along arc (i, j)
xi Binary; indicates if additional supply is installed at node i
yi Continuous; the percentage of the supply capacity to be used at node i

The model parameters, the cost and demand parameters, are shown in Table 2.

13
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Table 2: Model Parameters

Notation Description of Parameters

bi Demand at each demand node (MCM/year)
b+i Current + potential supply at each supply node (MCM/year)
Uij Current pipe capacity (MCM/year)
hb
i Annualized capital cost of installing max capacity at supply node ($)
cbi Annual operating costs of supply nodes: ($/MCM/year)
hU
ij Annualized capital cost of adding capacity to pipelines/ canal ($/MCM/year)

hU
ij Annual operating cost of pipelines/ canals ($/MCM/year)

The objective is expressed in the optimization model as follows:

min
�

(i,j)∈A
(cUijfij + hU

ijuij) +
�
i∈N

(cbiyi + hb
ixi), (1)

subject to
�

j:(i,j)∈A
fij −

�
j:(j,i)∈A

fji = bi + b+i yi i ∈ N (2)

fij ≤ Uij + U+
ij uij (i, j) ∈ A (3)

yi ≤ xi i ∈ N (4)

uij ∈ {0, 1}, (i, j) ∈ A; xi ∈ {0, 1}, i ∈ N ; 0 ≤ yi ≤ 1, i ∈ N

The first term of the objective function corresponds to the cost of the water transmission

pipes and canals, where the parameter cUij includes the per-unit operating, maintenance,

pumping, and environmental costs and depends on and the amount of flow between nodes i

and j (fij). The parameter hU
ij includes the annualized capital costs of building additional

capacity and depends on how much new flow capacity (uij) has to be installed between nodes

i and j to accommodate the needed flow.

The second term of the objective function corresponds to the cost of the water supply

nodes, be they desalination plants or surface and ground water supply points. The parameter
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Figure 4: Minimum cost solution with unequal per-capita demand. The existing network
elements are blue, the network elements installed in this solution are green, and the Med-
Dead Water Conveyance is shown in red.

cbi includes the annual operating, maintenance, and environmental costs and depends on the

amount of water supplied from node i as expressed as the percentage of the nodes maximum

capacity (existing capacity + new capacity) (yi). The parameter hb
i includes the annualized

capital costs of building a new desalination plant and depends on whether or not a new plant

is built at node i (xi). Existing desalination or surface supply points are dealt with in the

model by setting their installation costs (annualized capital costs) to zero.
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The first constraint, equation 2, enforces flow balance - the flow out of a node minus the

flow in is equal to the supply or demand at the node; the second constraint, equation 3,

enforces the capacity constraints on the arcs, and the third constraint , equation 4, sets the

variable relationship between x and y.

The water demand parameters (bi) are calculated by multiplying the current per-capita

water use rate for each country by the projected population at each node in the year 2025.

However, the current per-capita domestic water use rate is not equal among the states, with

Israelis using on average 104 m3, Jordanians using 60 m3, and Palestinians using 34 m3 per-

person per-year. It is assumed that if the Jordanians and Palestinians has access to more

water, they would use more water. A more equitable situation would be to design a water

distribution network that would provide for all people to have almost equal (on a per-capita

basis) amount of water available. Therefore a second set of water demand parameters is

calculated by multiplying one per-capita use rate (100 m3) times the projected populations

at each node.

The model is solved for both sets of demand parameters and two solutions with different

objective function values are obtained. The first solution has a lower objective function

value (lower cost) as it provides just enough water to each city to meet the population

growth, but not enough to the Jordanian and Palestinian cities to increase their per-capita

water availability equal to Israel (lower equity). This solution, seen in Figure 4, involves

building new desalination plants at Sorek and Palmachim and constructing the Med-Dead

Water Conveyance for a total cost of $1.03B. Jordanian demand is met by the new Dead Sea

desalination plant, which also supplies Jericho, Hebron, and Beesheba. Israeli demand and

demand in Gaza and the Northern West Bank (Nablus) is met by adding the supply from

the Mediterranean desalination plants to the existing Israeli National Water Carrier.

The second solution has a higher objective function value (higher cost) as it provides
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Figure 5: Minimum cost solution with equal per-capita demand. The existing network
elements are blue, the network elements installed in this solution are green, and the Red-
Dead Water Conveyance is shown in red.

more water to the Palestinian and Jordanian cities so that their per-capita water availability

is equal to the Israeli cities (higher equity). This solution, seen in Figure 5, involves building

the Red-Dead Water Conveyance to supply Jordan and southern Israel (Beersheba), and

building desalination plants at Sorek, Palmachim, Ashdod, Tel Aviv, Reshon Le Zion, and

Netanya to serve Israeli and Palestinian demand. The total cost of the “equitable” solution

is $1.8B

Thus by changing the demand parameters (the right hand side of the flow balance con-

straint) it is possible to set upper and lower bounds on total cost that correspond to maximum
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and minimum levels of equity. The next step is to formulate a new model where the objec-

tive is to maximize “demand satisfied” subject a constraint on cost. This new model will be

solved in increments in order to find intermediate balance between cost and equity.

Equity Model

Starting with the FCNF model, an additional variable qi is added to be the proportion of

the total equitable demand that is satisfied at node i. The objective function of the FCNF

model now becomes a constraint that is set to be less than or equal to a value between the

upper and lower cost bounds (intvalue). In addition, a minimum is set on qi so that the

proportion of total demand actually supplied at one node can not fall too low in relation to

the other nodes. For example, this “floor” prevents the model from supplying only 25% of

Amman’s water demand while supplying 100% of the demand of all the other cities, thus

maintaining some level of equity. The algebraic formulation of the equity model is as follows:

max
�
i∈N

qi (5)

subject to

�
(i,j)∈A

(cUijfij + hU
ijuij) +

�
i∈N

(cbiyi + hb
ixi) ≤ intvalue (6)

�
j:(i,j)∈A

fij −
�

j:(j,i)∈A
fji = biqi + b+i yi i ∈ N (7)

fij ≤ Uij + U+
ij uij (i, j) ∈ A (8)

yi ≤ xi i ∈ N (9)

qi ≥ minpercent i ∈ N (10)

uij ∈ {0, 1}, (i, j) ∈ A; xi ∈ {0, 1}, i ∈ V ; 0 ≤ yi ≤ 1, i ∈ V ; 0 ≤ qi ≤ 1, i ∈ V
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The equity model is solved six times for intermediate values (parameter intvalue) between

the upper bound on cost (the objective function value of the high cost - high equity solution)

of $1.8B and the lower bound (the objective function value for the low cost - low equity

solution) of $1.1B (rounded) by increments of $100M. For all instances the minpercent of

qi is set to 0.65 as this is slightly better than the 60% of total equitable demand that the

Jordanian cities receive in the min-cost min-equity solution.

Results

Below are the six solutions obtained for the intermediate cost limits with the new desalination

plants, new water transmission connections, and cities that receive less than 100% of their

“equitable” demand. In all solutions new connections were made from Amman to AzZarqa,

AzZarqa to Irbid, from the NWC to Gaza, and from the western line of the NWC to the

eastern line, so these connections are not listed in the tables below.

As the cap on the total cost is lowered, fewer desalination plants are built, and more of

the cities are supplied with water from the Med-Dead desalination plant at the expense of

the cities in Jordan. The figures associated with each of these solutions is included in the

appendix.

These six alternative network solutions are obtained by varying the cost constraint while

holding the minimum percentage constraint constant at 65%. More alternatives can be

obtained by changing the minimum value of qi (for example setting it at 90%).

In order to decide which is the “best” network solution, it would be necessary to elicit

single dimension value functions for cost and for equity (q) from decision makers, have them

set swing weights for these two attributes, and score each solution.

This chapter presented a method for optimizing the Middle East water distribution net-
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Table 3: Solution at $1.7B

Desalination Plants New Connections Percent of Supply Received

Med-Dead Med-Dead to Amman Amman: 0.91
Sorek Jerusalem to Hebron
Palmachim Jerusalem to Jericho
Ashdod NWC to Nablus
Haifa Nablus to Jerusalem
Rishon Le Zion Hebron to Beersheba
Ashdod II
Netanya

Table 4: Solution at $1.6B

Desalination Plants New Connections Percent of Supply Received

Med-Dead Med-Dead to Amman Amman: 0.91
Sorek NWC to Hebron
Palmachim Hebron to Jerusalem
Ashdod Jericho to Jerusalem
Tel Aviv NWC to Nablus
Haifa Nablus to Jericho
Rishon Le Zion Nablus to Jerusalem
Netanya

Table 5: Solution at $1.5B

Desalination Plants New Connections Percent of Supply Received

Med-Dead Med-Dead to Amman Amman: 0.78
Sorek Med-Dead to Beersheba
Palmachim Med-Dead to Jericho
Ashdod Jerusalem to Hebron
Tel Aviv NWC to Nablus
Rishon Le Zion Nablus to Jerusalem
Netanya

work for two competing objectives. It is not possible to optimize cost and equity at the

same time, so it is necessary to find alternatives that reach a compromise between the two

objectives. The optimization procedure presented here could be used in conjunction with
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Table 6: Solution at $1.4B

Desalination Plants New Connections Percent of Supply Received

Med-Dead Med-Dead to Amman Israel agricultural water: 0.84
Sorek Med-Dead to Beersheba Amman: 0.65
Palmachim Med-Dead to Jericho
Shomrat Med-Dead to Hebron
Tel Aviv Jerusalem to Hebron
Rishon Le Zion NWC to Nablus
Ashdod II Nablus to Jerusalem

Table 7: Solution at $1.3B

Desalination Plants New Connections Percent of Supply Received

Med-Dead Med-Dead to Jerusalem Israel agricultural water: 0.65
Sorek Med-Dead to Amman Amman: 0.65
Palmachim Med-Dead to Beersheba AzZarqa: 0.78
Ashdod Med-Dead to Jericho
Shomrat Med-Dead to Hebron
Rishon Le Zion NWC to Nablus
Ashdod II

Table 8: Solution at $1.2B

Desalination Plants New Connections Percent of Supply Received

Med-Dead Med-Dead to Jerusalem Israeli agricultural water: 0.65
Sorek Med-Dead to Amman Amman: 0.65
Palmachim Med-Dead to Beersheba AzZarqua: 0.65
Ashdod Med-Dead to Jericho Irbid: 0.65
Rishon Le Zion Med-Dead to Hebron Gaza: 0.87

NWC to Nablus

a full multi-attribute decision analysis process (identify objectives, develop evaluation mea-

sures, create single dimension value function, weigh objectives, etc.) by Middle East decision

makers in order to find a solution that best meets the various objectives of all the people in

the region.
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Chapter 3: Incorporating Uncertainty

Incorporating Uncertainty into Linear Programs

An MIP assumes deterministic input parameters (that is, known costs and demands), but in

this problem a water distribution system is being optimized to meet current and uncertain

future demands. There is uncertainty as to the actual future demands, there is uncertainty as

to the cost of building infrastructure (the price of construction materials change all the time,

the interest rates change), and there is uncertainty as to the operating costs (labor costs can

change, energy prices can fluctuate). For these reasons, an MIP using deterministic inputs

of costs and demands may not accurately model the real-world situation, and therefore not

provide a realistic answer.

Other researchers have used math programming and optimization techniques to solve

water distribution problems. A common approach is to formulate the design of a water

distribution network as a single-stage optimization model. These models have evolved to

incorporate deterministic measures of pipe reliability and maintenance cost. A number of

investigators have employed heuristic procedures for single-stage optimization models for

water distribution. However, a common weakness of these approaches is that the sole use

of deterministic optimization fails to properly incorporate uncertainty into the models. The

following review covers possible methods to incorporate uncertainty into math programs in
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general and network programs specifically.

Stochastic Programming

Sen and Higle (1999) present a tutorial of linear-programming models for optimization under

uncertainty, which they call stochastic linear programming (SLP). They point out the pitfalls

of näıve approaches to SLP, such as using expected values of random variables as inputs or

using the “wait and see approach,” where the LP is solved for each possible outcome of

the random variable. In each of these cases, the solution may be infeasible in respect to

alternative outcomes of the random variables, limiting the usefulness of this type of analysis.

As an alternative, Sen and Higle present two-stage recourse models where some decision

variables are implemented before the outcome of the random variable is observed and some

decision variables are implemented after.

Simple recourse models compensate for violations of the right-hand side of the constraints

by adding a proportional penalty in the objective function. The simple recourse method

allows for first-stage (planning) decisions that may not satisfy all the constraints to still be

acceptable, just more costly. Simple recourse is still limited though, as it is not flexible in

its response to uncertainty — recourse actions are restricted to imposing a penalty in the

objective function. The general recourse model, on the other hand, divides the problem

into two stages, random variables that must be decided right away, and random variables

whose decision can be postponed. Instead of adding a penalty to the objective function, the

constraints are re-written to include constraints that included only the first stage decision

variables, and constraints that include both sets of decision variables.

In both the simple and general recourse models, a cost must be assigned to the “recourse

action” (the penalty for violating feasibility), but in some models it may be more realistic

to allow a constraint to be violated, as long as the probability of violating the constraint is
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held below some threshold. For example, in models of network reliability or service times,

it may be a given that the system can not be designed to meet its requirements under all

circumstances – 100% of the time – rather the system is designed to meet demand “most”

of the time.

These types of models can be formulated again as an extension of deterministic linear

programs, but with probabilistic constraints. An example of how this could be formulated

is given by Sen and Higle (1999) as follows, with A1x ≥ b1 being the constraint that only

contains deterministic variables, and P (Ã2x ≥ b̃2) ≥ p being the probabilistic constraint.

The linear program is then formulated as follows:

Minimize cx
subject to

A1x ≥ b1

P (Ã2x ≥ b̃2) ≥ p

L ≤ x ≤ U

In this example p ∈ (0, 1) is the threshold reliability required of the system.

Robust Optimization

A different approach to dealing with uncertainty in mathematical programming is to focus on

the tradeoffs between the means and variances of the objective. This type of model may be

appropriate when one wishes to minimize the variance of the objective value or to optimize

the worst-case given the data. Sen and Higle (1999) and Bertsimas and Sim (2003) point

out that many of the earlier approaches to robust optimization find solutions that are over-

conservative, and Sen and Higel recommend against the method. However, Bertsimas and
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Sim present a robust optimization approach that allows them to control how conservative the

solution is by setting probabilistic bounds on the constraint violations specifically in discrete

optimization and network flow problems. Their method allows for the model to be adjusted

to control for the tradeoff between optimizing the objective or increasing the robustness by

varying a single model parameter.

Simulation Optimization

Two stage or multi-stage stochastic programming may be appropriate for integrating random

variables with discrete distributions or for modeling a limited number of outcomes, but when

the random variables have a continuous probability distribution or there are many variables

in the model, it may be prohibitive to enumerate all the possible scenarios. A solution to

this problem is to replace the random variables in the model with a sample taken from the

probability distributions of the random variable. The model can then be solved n times,

with n being the number of samples drawn from the distributions. It has been shown that

the optimal solutions obtained will converge as the number of samples increases.

Incorporating Uncertainty in Network Models

Dye et al. (2003) Dye et al. (2003) present a stochastic programming example of a network

optimization problem where the objective is to maximize profit in a telecommunications when

capacity is limited and demand is uncertain. They demonstrate that while a polynomial

approximation scheme is known for the deterministic version of the problem, making the

demands stochastic makes the problem strongly NP-hard. The addition of stochasticity

results in a worse-case performance ratio that increases as the number of input parameters

increases. The authors find that if they limit the number of instances they can develop a
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heuristic with a constant worst-case performance ratio.

Gutierrez et al. (1996) use a robust optimization approach to find optimal designs in unca-

pacitated networks. The authors use an adaptation of Benders decomposition methodology

and tailor it for efficiency. This algorithm has the advantage that it considers information

about all the data scenarios simultaneously and results in an adequate number of robust

network designs. However, this method is only applicable to situations with a pre-specified

set of future operating scenarios.

Gürkan et al. (1999) use the sample-path technique to solve optimization problems when

the objective function and constraints are both stochastic. They apply their new technique

to a network design problem to find optimal arc capacities by minimizing the sum of capacity

allocation costs and a measure of the expected shortfall in capacity when supply and demand

are uncertain.

Recent work in water distribution optimization mainly involves simulation optimization

techniques that incorporate various meta-hueristics such as genetic algorithms, simulated

annealing, ant colony optimization, shuffling frog leaping algorithms, and particle swarm

optimization. For example, Eusuff and Lansey (2003) use the shuffling frog leaping algorithm

combined with hydraulic simulation software EPANET (U.S. EPA, 2009) to select optimal

pipe diameter sizes in a two-looped process, whereas Suribabu and Neelakantan (2006) take a

similar approach but find particle swarm optimization to be more efficient than the shuffling

frog leaping algorithm.

The approach used in this research is similar to previous work on finding shortest paths

in stochastic graphs; i.e., graphs where the arc costs are represented by random variables

with possibly known probability distributions. Frank (1969) presents a method to compute

the probability distributions of shortest path lengths in such graphs using Monte Carlo

simulation and to compare paths according to the probabilistic costs. Sigal et al. (1980)
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develop a new performance measure called a path optimality index (the probability that a

path is shorter than all other paths) and present a procedure using the integration of the

uniformly directed cutsets to compare of all candidate paths.

This chapter explains the process for specifying distributions for the uncertain input

parameters (costs, demands, etc.), sampling the distributions in a Monte Carlo fashion,

and employing a Bayesian model selection framework to find the most likely minimum cost

network design.

Bayesian Mixed Integer Programming

The procedure uses concepts from Bayesian Model Averaging (BMA) to characterize the

distribution of solutions to an MIP with random inputs. This approach is called Bayesian

Mixed-Integer Programming (BMIP). Background information on BMA and Bayesian anal-

ysis via sampling methods can be found in (Hoeting et al., 1999), gelman:03,gilks:06.

Suppose an MIP is given with unspecified values for inputs and whose objective function

reflects a desire to minimize cost. Inputs include objective function coefficients, constraint

coefficients, right-hand sides of inequalities, and variable bounds. Also given are the data

that reflects the uncertainty in the input values. The output of the BMIP procedure includes:

1. the probability that a set of values for the discrete decision variables in the MIP are
optimal for a realization of the inputs,

2. the probability that a certain value for a discrete decision variable in the MIP occurs
in a least-cost solution,

3. the distribution of optimal values for continuous decision variables in the MIP, and

4. the probability that a given set of values for the discrete decision variables is feasible
for a realization of the inputs for the MIP
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Figure 6: Steps in the Bayesian Mixed Integer Programming process

Figure 6 illustrates the steps involved in the process. The data are combined with pre-

specified likelihood functions for the data and with the prior distributions for the parameters

of the likelihood functions to form the joint posterior distribution. The posterior distribu-

tion, in conjunction with the likelihood of a new input value, is used to create the joint

posterior predictive distribution of new inputs to the MIP. The posterior predictive distribu-

tion is sampled repeatedly and passed to the MIP and an optimal solution for each sample is

obtained. Posterior solution probability distributions can then be empirically derived from

the set of all solutions, characterizing the distribution of candidate sets of values for dis-

crete decision variables in a least-cost solution. Additionally, posterior decision probability

distributions can be derived from the set of all solutions, characterizing the distribution of

variable values for individual decision variables. The posterior solution probabilities can

be used to compare candidate networks and select most-probable least-cost values for the

discrete decision variables.

Instead of simply using the sample mean, ā, as a point estimate of an individual input

to the MIP, the BMIP process uses a sample from the posterior predictive distribution for a
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future value of the input, a∗, given the data D, which comes from:

p(a∗|D) =

�

Θ

p(a∗|θ)p(θ|D)dθ

where p(a∗|θ) is the likelihood for a∗ given θ and p(θ|D) is the posterior distribution as found

by Bayes theorem:

P (θ|D) =
P (θ)P (D|θ)�

Θ P (Si|θ,D)P (θ|D)dθ

where P (θ) is the prior distribution of θ and P (D|θ) is the likelihood of the data given θ.

Evaluating p(θ|D) and p(a∗|D) can be achieved via a Markov-Chain-Monte-Carlo sam-

pling algorithm such as Gibbs sampling or Metropolis-Hastings sampling. These will generate

samples from the posterior predictive probability distributions for the MIP inputs so that

the range of behaviors of input is captured and their effect on optimal MIP solutions can be

observed.

Modeling Input Parameters

The core model is the same fixed cost network flow, mixed-integer program (MIP) model

described in Chapter 2 (equations 1 - 4). However, instead of using single point estimates for

the model parameters, to use the BMIP process it is necessary to generate probability distri-

butions for each input parameter. These distributions are the Bayesian posterior predictive

distributions as described below.
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Modeling Demand

Dynamic Linear Model for population growth

Modeling the demand for water in the year 2025 involves several steps. First, it is necessary

to determine the the population growth rate for each country individually, as for political,

social, and demographic reasons, the populations of Israel, Jordan, and the Palestinian

Territories are expected to be growing at different rates. The growth rate can be determined

by the following:

rt =
Nt −Nt−1

Nt−1

where Nt is the size of the population at time t. Population data from the last 18 years (1990

to 2008) are obtained from the World Bank database for Israel, Jordan, and the Palestinian

territories.(The World Bank, 2010) Instead of just using the mean growth rate from this

period, the data are fit to a simple Dynamic Linear Model (DLM) given by:

rt = µt + εt,

µt = µt−1 + ηt

where rt is the growth rate and µt is the mean growth rate at time t, εt ∼ N(0, σ2
ε) and

ηt ∼ N(0, σ2
η). Thus, instead of just calculating a single growth rate at time t, the dynamic

linear model calculates the growth rate as a normal distribution with a mean growth rate

plus variance. The “fit” of the model to the data can be adjusted by modifying the prior

probabilities (the σ2
ε and the σ2

η). Ideally the 95% credible interval of the posterior distri-

bution is wide enough to capture the data points, but not too wide as this will increase the

variation in the posterior predictive distributions. After the model is fit, posterior predictive

distributions can be calculated for time t+1, t+2, etc. The variance of the posterior predic-

tive distributions grows with each time period in the future as the variance is cumulative and
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Figure 7: Population forecast from DLM model for Israel (in blue) with upper and lower
bounds of the 95% credible predictive interval (in red), and the Israeli government’s popu-
lation projection for 2010, 2015, 2020, and 2025 (Xs)

dependent on the variance of all the previous predictions. The advantage to using a dynamic

linear model to create a distribution rather than a point estimate is that the distribution

can be sampled to capture the range of possible future outcomes. In this case, the posterior

predictive distributions of the growth rates were sampled 100,000 times for each year up to

2025. Then using the starting population data (year t = 2008), estimates of the population

for each successive year are forecasted by taking the population in year tand multiplying it

by (1 + rt) to get the population in year t+ 1.

As seen in Figure 7, the population forecast for Israel, the 95% credible predictive inter-

val grows wider each year in the future as the uncertainty increases. Although the range of

the population predictions in 2025 is large (from no change in population to 3 times cur-

rent population, because the posterior predictive distributions are normally distributed, the
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Figure 8: Population forecast from DLM model for the Palestinian Territories (in blue) with
upper and lower bounds of the 95% credible predictive interval (in red), and the United
Nation’s population projection the West Bank and Gaza in 2010, 2015, 2020, and 2025 (Xs)

probabilities of the extreme predictions are low. The forecast from the DLM is fairly well

calibrated to the population forecasts for the years 2010, 2015, 2020, and 2025 published

by the Israel Central Bureau of Statistics (Israel Central Bureau of Statistics, 2010). The

population forecast for the Palestinian Territories can be seen in Figure 8 and the forecast

for Jordan can be seen in Figure 9. While the DLM forecast for the Palestinian Territories is

well aligned with population projections published by the United Nations (United Nations

Statistics Division, 2008), the DLM forecast for population projection of Jordan is somewhat

higher than the United Nations’ (United Nations Statistics Division, 2008).

The next step in calculating future water demand is to estimate the per-capita water

demand rate in cubic meters (m3) per person per year. In each country, the majority of water

is consumed in the agricultural sector (58% in Israel (Fixler, 2010)), but the assumption is
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Figure 9: Population forecast from DLM model for Jordan (in blue) with upper and lower
bounds of the 95% credible predictive interval (in red), and the United Nation’s population
projection for Jordan in 2010, 2015, 2020, and 2025 (Xs)

that any water supplied by desalination plants or the large conveyance projects will be

primarily for domestic uses. It is assumed that agricultural use of “fresh” water will be

capped a current usage rates (as is the current policy in Israel), and any growth in agricultural

demand will be met by increasing the use of brackish water and treated waste water, and

only the demand for “fresh” water is considered in this optimization problem.

Data for current domestic water consumption comes from several sources. According

to Fixler (2010), the mean annual per-capita domestic water consumption in Israel for the

last 11 years (1997-2008) was 104.67 cubic meters per person per year with a standard

deviation of 9.33 cubic meters. From this data a normal distribution was constructed and

100,000 samples of consumption rates were taken and multiplied times the 100,000 samples

of population size to get 100,000 predictions of domestic water demand for Israel. Similarly,
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Figure 10: Histogram of Israeli population predictions from 2010 to 2025

the domestic water demand of Jordan was predicted by the same procedure but assuming a

a normal distribution of per capita water consumption with a mean of 60.23 cubic meters

and a standard deviation of 7.61 cubic meters. Although it is accepted that the per capital

domestic consumption in the Palestinian Territories is much less than in Israel or Jordan,

data for the Palestinians were limited. A triangular distribution was assumed using 3 rates

found from different sources (Rabi, 2009; Palestinian National Authority and Palestinian

Water Authority), with a low of 26.73, a high of 49.35, and a mode of 34 cubic meters per

person per year. Again, this distribution was sampled and multiplied times the Palestinian

population forecasts to predict the Palestinian water demand.

After the total population and resulting water demand was forecasted, the demand had
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to be allocated to the demand points in the model. Websites for each nation (Israel Central

Bureau of Statistics, 2010; The Hashemite Kingdom of Jordan Department of Statistics,

2010; Palestinian Central Bureau of Statistics, 2010) were consulted to find the current

distribution of population by district. Since the network representing the problem area does

not have a node in each district, the districts were grouped around the closest node and the

entire proportion of the grouped population assigned to that district. For example, Israel

divides its nation into 7 districts and 16 subdistricts, yet the network representation of Israel

only has 13 demand points, so some of the subdistricts were combined and are represented

as one demand point. The distribution of current population for the districts of Israel can

be seen in Table 15 in the Appendix.

The distribution of population is not likely to be exactly the same in 2020 as it is today,

some cities will gain proportion, some will decline, and the demand for water is not likely to be

exactly proportional to the population of each district. For these reasons, using the Dirichlet

distribution to allocate water demand to each node is helpful. The Dirichlet distribution can

be used to generate variability in any type of “string cutting” problem, that is, any problem

where a whole has to be cut into several pieces, of slightly varying proportions, but that

always sum to the whole. The Dirichlet distribution is formulated as follows:

p(ϕ1, ϕ2, ..., ϕk−1|Nt,1, Nt,2, ..., Nt,k) ∝
k�

i=1

ϕ
Nt,i−1
i

where Nt,i is the current proportion of the total population at node i. A uniform Dirichlet

distribution is specified for ϕi and 100,000 samples are taken of population proportion. Since

the Dirichlet distribution has the property that
k�

i=1
ϕi = 1, the demand will be distributed

across the demand points while maintaining the total demand.

Agricultural demand for freshwater was handled differently for Israel and Jordan and the
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Palestinian Territories. According to Fixler (2010) the agricultural allocation of fresh, natural

water from the NWC will be capped at 450 MCM per year from now on. In the optimization

model this demand is held constant and directed to one demand point in southern Israel.

The situation in Jordan and the Palestinian Territories is slightly different, where most of the

water is supplied from ground water wells. The combined domestic and agricultural demands

are already creating a shortage of supply resulting in over-extraction (removal of water from

aquifers or streams above sustainable levels). It is not possible to determine how much of the

shortage is attributable to domestic demand or agricultural demand, but is assumed that any

new water supply and distribution system will have to satisfy the current shortage (so that

domestic use of ground water can be shifted to meet the agricultural demand) in addition to

meeting the projected increase in domestic water demand from year t to year t+1. Therefore

the current shortage is used as a starting point (to capture the agricultural demand) and

only the increase in water demand each year is added to the total water demand for Jordan

and the Palestinian Territories.

The resulting inputs into the optimization model are samples from the posterior predictive

distribution of the total annual demands at each demand node i at time t, generated by

bit
∗ = ϕ∗

iN
∗
t �

∗

where ϕ∗
i is a sample from the ith component of the allocation vector distribution, N∗

i is a

sample from the posterior predictive distribution of the population, and �∗ is a sample from

the posterior predictive distribution of per-capita water consumption.

36



www.manaraa.com

Modeling Costs

Modeling Desalination Plant Costs

The objective of the optimization model is to minimize the total cost of producing and

transporting water to the demand locations. Two natural categories of expenses are the

capital costs of building the desalination plants and infrastructure, and the operational costs

of running the plants and transporting the water. To make a fair comparison among the

options, it is necessary to compare the lifetime costs of the desalination plants, and not

just their investment costs. Take the following example of three desalination plant options,

assuming they all have the same output in MCM per year:

Table 9: Desalination plant example

Plant A B C

Investment Cost 300 500 400
Annual O and M Costs 40 20 10
Sum 340 520 410

If we just summed the investment and operations and maintenance costs, it would appear

that plant A, with a total cost of $340 million dollars is the best investment; however, this

is not a fair comparison, because it does not take into account the cumulative O&M costs

over the lifetime of the plant nor the fact that the capital investment is financed over many

years. If we assume that the lifetime of a desalination plant (and the repayment period of

financing the construction of the plant) is 25 years, we can calculate the annualized capital

expenses by multiplying the investment cost with the annuity factor

a =
i

1− ( 1
1+i)

n

where i is the interest rate (discount rate) and n is the lifetime of the desalination plant.
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Using an interest rate of 8%, the following annual capital costs can be calculated and then

the total annualized cost can be compared:

Table 10: Example with annualized capital costs

Plant A B C

Investment Cost 28 47 37
Annual O&M Costs 40 20 10
Total annual cost 68 67 47

Lifetime cost (x25) 1703 1671 1187

It is clear now that plant A is actually the worst option when the lifetime cost of the

plants are compared. While the choice of interest rate does influence the relative annual

costs, in this example, plant C will have the lowest annualized (and lifetime) cost until the

interest rate reaches 30%.

The costs of desalinating water is usually reported in the unit cost of water, which is the

annualized capital and O&M expenses divided by the annual output of the plant (m3 per

year). According to the International Desalination Association, (Global Water Intelligence,

2009) the typical cost breakdown of the annual cost of water is as seen in Table 11.

Table 11: Breakdown of annual desalination plant costs

Annualized Capital Costs 37%
Energy (at $0.07/kWh) 36%
Chemicals 12%
Total Maintenance 6%
Total Labor 4%
Membranes (5 yr. life) 4%
Cartridge Filters 1%

Since most of the data on desalination costs are given as unit costs, predictions of unit

costs of the potential desalination plants can be used to extrapolate the total capital and

operation and maintenance costs based on the plant’s output capacity. Data from 44 large
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scale desalination plants installed in the last decade were used to create a non-linear re-

gression model of unit cost by capacity (Global Water Intelligence, 2009). The nonlinear

regression was approximated using the R Statistical Package (Ihaka and Gentleman, 1996),

and then samples of the posterior distribution of the regression parameters were generated

in WinBugs (Lunn et al., 2000). Figure 11 shows the fitted regression model on the data.

Yi = α− β(1− e−xi/λ) + �i, i = 1, ..., n,

where Yi is the unit cost of plant i, xi is the capacity of plant i, and �i ∼ N(0, τ). Normal

prior distributions are set for α and β (α ∼ N(1.6, 0.0001) and β ∼ N(0.8, 0.0001)); a

gamma distribution is set for λ (λ ∼ γ(18, 0.8)) and a gamma distribution is given to

τ (γ(0.1, 0.1)). If the prior distributions are sampled a sufficient number of times, the

resulting joint distribution is a good approximation to the true posterior distribution of the

model parameters. Using WinBugs, 100,000 samples were created for the model parameters

(α, β, and λ) using the prior distributions and initial values. This constructed posterior

distribution approximation can then be used to generate 100,000 predictions of the unit

costs of a potential desalination plant Y ∗
i by solving the regression model with the plant’s

annual capacity, x∗
i .

Once the unit cost predictions are obtained, they are split into annualized capital costs

and annual operating costs based on the International Desalination Association’s estimate

that annualized capital expenses make up 37% of the unit cost and annual operating expenses

make up 63% of the unit cost. The Dirichlet distribution is used again to generate variation

on proportion of capital expenses to operating expenses.

p(υ1, υ2|U1, U2) ∝
2�

i=1

υUi−1
i
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Figure 11: Regression model plotted on a scatter plot of the unit cost data.

where U1 = 0.37 and U2 = 0.67.

Samples of the annual capital costs for each desalination plant ξ∗i are then obtained by

multiplying υ1,i ∗ Y ∗
i . However, this does not include the expense of the Red-Dead Water

Conveyance or Med-Dead Water Conveyance. To estimate the annualized costs of building

these large projects Ξi, an estimate of the initial cost of each project is multiplied times an

annuity factor. The annuity factor is estimated using a time period of 50 and an interest

rate ∼ U(0.03, 0.08), and an initial investment is given a triangular distribution with at low

of $4 billion, a high of $7.5 billion, and a median of $6 billion (based on estimates found in

The World Bank (2007) Israel Ministry of Foreign Affairs (2002)). Then the annual capital
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costs for the two water conveyance and desalination projects are:

ξMedDead = ξMedDead + ΞMedDead

ξRedDead = ξRedDead + ΞRedDead

The annual operating costs for new plants can similarly be obtained by multiplying υ2,i ∗Y ∗
i ,

whereas the operating costs for the existing plants are taken from the literature (Global

Water Intelligence, 2009).

Modeling the Cost of Water Transmission Lines

Data on the costs of installing water transmission lines is not abundant in the literature.

Zhou and Tol (2004) note that most engineering firms consider this information proprietary,

and are not willing to share it with researchers. However, Kally (1993) does present estimates

the cost of moving water long distances in with a specific focus on projects in Egypt, Israel,

and Turkey. Kally estimates the costs of moving water to be $610 for every kilometer

of horizontal distance, and $520 for every meter in lift per MCM (million cubic meters).

This cost can be considered similar to the unit cost of water; it is composed of a mix of

annualized capital costs and annual operation and maintenance costs. For simplicity then,

the installation cost of adding new capacity is considered to be $610 per m3 per kilometer,

and the operation and maintenance costs to be a flat $10 per m3 per kilometer and $233

per m3 per m elevation gain. The “pumping cost” is as an estimate of the energy costs

of pumping water (at $0.06 per kWh), as calculated using the tutorial in Peacock (1998).

Unfortunately there is not enough date to perform a Bayesian data analysis to incorporate

uncertainty in the water transmission costs.
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Modeling Environmental Costs

At the operational phase, the most significant aspects of supplying water from a desalination

plant are energy use (impact = air emissions from electricity generation - CO2, SOx, NOx)

and the brine generation and discharge (impact = decline in water quality). The most sig-

nificant aspects of distributing the water are energy use for pumping (impact = air emissions

from electricity generation - CO2, SOx, NOx) and (in the case of the Med Dead and Red

Dead projects) the potential for salt water to leak from the transmission pipes/ canals.

Of the aspects and impacts identified, energy consumption and the resulting air pollu-

tion from desalination plants was decided to be the most straightforward to model. Em-

pirical prior distributions for the cost of CO2 emissions, ν, that results from an associated

amount of energy, ε, needed to desalinate a m3 of water are as defined as µν ∼ N(µ̂ν , 10),

µε ∼ N(µ̂ε, 10), σ2
ν ∼ Inv − χ2(6, 0.1) and σ2

ε ∼ Inv − χ2(6, 0.1), where µ̂ν and µ̂ε are re-

spective sample means. Data on carbon emissions, νi, was based on Israel’s average emission

factor of CO2 from electricity generation Israeli Electric Corporation (IEC) (2009). Energy

requirements, εi, was set to be a recent average of the cost a European Allowance Unit

(EAU) on the European Carbon Exchange (ECX), where an EAU is “issued to installations

which have a cap on their emissions under the EU Emission Trading Scheme. Each EUA

grants the installation the right to emit one tonne [metric ton] of carbon dioxide during a

commitment period.” (European Climate Exchange, 2009) Using the sample data the fol-

lowing likelihoods were generated: νi ∼ N(µν , σ2
ν) and εi ∼ N(µε, σ2

ε). Using Bayes theorem,

samples ν∗ and ε∗ can be obtained from their respective posterior predictive distributions.

Quantifying the cost of an adverse environmental impact can be difficult when the natural

resource or ecosystem does not have a direct market value. In these circumstances contin-

gent valuation, travel costs, hedonic pricing, and habitat equivalency analysis can be used

to quantify environmental impact; although not part of this study, one avenue for future
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research could be to use one of these methods to quantify the environmental impact of the

brine discharge and the risk of salt-water pipes breaking.

Results of Deterministic Model

The solution to the fixed cost network flow mixed-integer program (MIP) model described

in Chapter 2 (equations 1 - 4), using point estimates for costs and demands, is to use all of

the existing supply nodes in Israel (except the Hadera plant) to capacity and add the Med-

Dead Water Conveyance, the Soreq plant, and the addition to the Palmachim plant. To

meet water demand in Jordan, a new connection is added from the Med-Dead desalination

plant to Amman, and from Amman to AzZarqa, and then from AzZarqa to Irbid. To supply

water to the Palestinians, connections are built from the Med-Dead plant to Jerusalem &

East Jerusalem, Jericho, and Hebron; Nablus and Gaza are supplied by new connections to

the Israeli National Water Carrier (NWC). Water is also sent from the Dead Sea desalination

plant to Beersheba. A graphical representation of this solution can be seen in Figure 12.

An alternative solution is obtained if we change the assumptions, for example, if Israel

does not want to participate in a cooperative regional plan and only considers their own

future water demands. In this case, the optimal solution is not to build the Med-Dead

Water Conveyance and desalination, and instead build new desalination plants at Sorek and

the addition to Palmachim.

When the Jordanians consider only their future water needs, the optimal solution is to

use the Med-Dead Water Conveyance and desalination plant at 59% of capacity. However,

given that the Med-Dead Water Conveyance is completely in Israeli territory, it is unlikely

this solution is politically feasible. The more likely solution is for the Jordanians to use the

Red-Dead Water Conveyance and desalination plant at 55% of capacity.
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Figure 12: Solution to the deterministic model. The existing network elements are blue, the
network elements installed in this solution are green, and the Med-Dead Water Conveyance
is shown in red.

Results of Bayesian Mixed Integer Program

Most Probable Solution

The BMIP methodology is applied to the Middle East water distribution problem to generate

solutions that reflect uncertainty in demand and costs. A solution to the BMIP consists of

the values of the xi variables (decision whether or not to install desalination plant i) and the

values of the fij variables. The values of the fij variables are converted into binary values (if
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Figure 13: Most probable solution from the BMIP. The existing network elements are blue,
the network elements installed in this solution are green, and the Red-Dead Water Con-
veyance is shown in red.

flow on arc i, j > 0, then fij = 1) so that the unique solutions can be aggregated and counted.

When the 100,000 solutions consisting of the binary values of the desalination plants and

new arcs are aggregated, there are 1824 unique combinations of desalination plants and arcs

that are “optimal solutions.” 15% of the simulations result in no feasible solution, and the

most probable (most frequently occurring) least cost solution has a frequency of 4%.

The most probable solution is to build only the Red-Dead Water Conveyance and desali-

nation plant (no additional new desalination plants), and build new connections from the
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Table 12: Probability that a desalination plant is included in the least cost solution

Soreq 32% Med-Dead 56% Ashdod II 10%
Palmachim 15% Tel Aviv 6% Red-Dead 44%
Ashdod 22% Haifa 2% Netanya 3%
Shomrat 11% Rishon Le Zion 32%

Red-Dead desalination plant to Jerusalem, the Red-Dead desalination plant to Beersheba,

the Red-Dead desalination plant to Hebron, the Red-Dead desalination plant to Amman,

Amma to AzZarqa, AzZarqa to Irbid, the NWC to Gaza, the NWC to Nablus, and from

Nablus to Jericho. The graphical representation of the most-probable solution can be seen

in Figure 13.

Component Probabilities

In addition to providing the probability of the solutions, the BMIP output can be used to find

the individual component probabilities, and the probabilities of unique sets of components

(desalination plants or new connections). For example, the probability that each desalination

plant is included in an optimal solution are seen in Table 12. While the most probable solu-

tion includes the Red-Dead Water Conveyance and desalination plant, the Med-Dead Water

Conveyance and desalination plant actually occurs in more of the optimal solutions: 56% of

the solutions include the Med-Dead Water Conveyance and desalination plant and 44% of

the solutions include the Red-Dead Water Conveyance and desalination plant. Additionally,

the solutions can be segmented to consider just the set of desalination plants without the

new connections. The number of unique solutions then decreases to 426, with the probability

of the most frequent solution, “build only the Red-Dead Water Conveyance and desalination

plant,” increasing to 8%.

Again using the binary transformation of the flow variables fij (1= there is flow on the
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arc; 0 = the arc is not used), the probability that each new connection is added in an optimal

solution is seen in Table 13. The new arcs “Int 7 to Int 6,” “Int 8 to Int 7,” and “Int 8 to Int

11” all represent changes in the current direction of flow in the NWC (from north to south)

to south to north, and in the case of arc “Int 8 to Int 11,” a connection that moves water

from to west to east. In addition to the arcs listed in Table 13, the following new arcs were

included 100% of the time: Amman to AzZarqa, AzZarqa to Irbid, and the NWC to Gaza.

Table 13: Probability that a new arc is included in the least cost solution

Med-Dead to Jerusalem 56% Beersheba to NWC 22%
Med-Dead to Amman 56% Jerusalem to Hebron 0.2%
Med-Dead to Beersheba 33% Jericho to Nablus 10%
Med-Dead to Jericho 40% Nablus to Jericho 29%
Med-Dead to Hebron 56% NWC to Nablus 98%
Red-Dead to Jerusalem 44% Int 7 to Int 6 3%
Red-Dead to Amman 44% Int 8 to Int 7 0.6%
Red-Dead to Beersheba 44% Int 8 to Int 11 99.9%
Red-Dead to Hebron 44%

By looking at the unconverted fij values (the actual flow needed to satisfy demand) the

probability distributions for the capacity needed on each arc can also be calculated. For

example, the results show that the Dead Sea desalination plant to Jerusalem connection is

in 44% of the optimal solutions, and when this connection is made, the capacity needed on

this arc follows a distribution as show in Figure 14.

Conclusions

Bayesian Mixed Integer Programming as a new way to incorporate uncertainty into optimiza-

tion models. In this method a Bayesian framework is used to construct posterior predictive

distribution of input parameters, sample them, and then use the samples as parameter inputs
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Figure 14: Histogram of the capacity needed on the connection between the Red-Dead
desalination plant and Jerusalem

into the MIP. The approach facilitates wide ranging probabilistic analyses of solutions and

the nature of individual decisions that comprise these solutions.

This framework is applied to the problem of modifying a water distribution network of Is-

rael, the Palestinian Territories, and Jordan. The deterministic model indicates that the best

option for the region is to install the Med-Dead Water Conveyance, but the BMIP process

finds that the most probable solution includes building the Red-Dead Water Conveyance,

with a probability of 8%.

While this research attempted to incorporate some of the uncertainty involved in opti-

mizing the Middle East water distribution network, an additional extension might involve

modeling the uncertain effects of climate change on the existing ground water and surface

water supply. Further research might also include life-cycle analysis of component installa-

tion and operational costs, quantification of the political and social costs, and quantification
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of other environmental impacts such as the environmental impact of the brine discharge and

the risk of salt-water pipes breaking.
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Appendix

Figure 15: Solution to the model where cost is capped at $1.7B
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Figure 16: Solution to the model where cost is capped at $1.6B
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Figure 17: Solution to the model where cost is capped at $1.5B
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Figure 18: Solution to the model where cost is capped at $1.4B
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Figure 19: Solution to the model where cost is capped at $1.3B
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Figure 20: Solution to the model where cost is capped at $1.2B
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Table 14: Population figures from World Bank

Year Israel Pal. Terr. Jordan
1990 4,660,000 1,969,967 3,170,000
1991 4,949,000 2,047,783 3,545,000
1992 5,123,000 2,129,780 3,733,000
1993 5,261,000 2,215,059 3,905,931
1994 5,399,000 2,303,754 4,060,840
1995 5,545,000 2,396,000 4,195,000
1996 5,692,000 2,518,000 4,325,045
1997 5,836,000 2,628,000 4,459,212
1998 5,971,000 2,720,055 4,597,400
1999 6,125,000 2,815,334 4,680,500
2000 6,289,000 2,913,950 4,797,500
2001 6,439,000 3,016,021 4,917,500
2002 6,570,000 3,121,667 5,038,000
2003 6,689,700 3,231,014 5,164,000
2004 6,809,000 3,344,191 5,290,000
2005 6,930,100 3,461,333 5,411,500
2006 7,053,700 3,582,557 5,537,600
2007 7,180,100 3,708,069 5,718,855
2008 7,308,100 3,837,957 5,906,043
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Table 15: Israeli Population by District

District Model Node Population Percent of Population

Northern 1,242,100 17%

Akko 8%

Nazareth 7%

Golan 2%

Haifa 880,000 12%

Haifa 9%

Hadera 3%

Central 1,770,000 25%

Netanya 5%

Petah Tikvah 8%

Rishon LeTsiyon 11%

Jerusalem 910,000 12%

Jerusalem 12%

Southern 1,053,000 14%

Ashdod 6%

Beersheba 7%

Eilat 1%
Judea and Samaria 290,000 4%

Totals 7,373,000 100%
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